Key Takeaways

  • Numerator is the top number; denominator is the bottom
  • Find common denominators to add/subtract fractions
  • Multiply straight across; divide by multiplying by the reciprocal
  • Memorize common fraction-decimal equivalents
  • Use visual models to help students understand fractions
Last updated: January 2026

Fractions and Decimals

Understanding fractions and decimals—and how to convert between them—is essential for the ParaPro Mathematics section.

Understanding Fractions

A fraction represents a part of a whole.

PartNameExample
Top numberNumerator3 in ¾
Bottom numberDenominator4 in ¾

Types of Fractions:

  • Proper: Numerator < Denominator (¾)
  • Improper: Numerator ≥ Denominator (5/4)
  • Mixed Number: Whole number + fraction (1¼)

Converting Between Mixed Numbers and Improper Fractions

Mixed → Improper: Multiply whole by denominator, add numerator

234=(2×4)+34=1142\frac{3}{4} = \frac{(2 \times 4) + 3}{4} = \frac{11}{4}

Improper → Mixed: Divide numerator by denominator

114=11÷4=2 remainder 3=234\frac{11}{4} = 11 ÷ 4 = 2 \text{ remainder } 3 = 2\frac{3}{4}

Adding and Subtracting Fractions

Same Denominator: Add/subtract numerators, keep denominator

38+28=58\frac{3}{8} + \frac{2}{8} = \frac{5}{8}

Different Denominators: Find common denominator first

13+14=412+312=712\frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}

Multiplying Fractions

Multiply numerators, multiply denominators:

23×45=2×43×5=815\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3 \times 5} = \frac{8}{15}

Dividing Fractions

Multiply by the reciprocal (flip the second fraction):

23÷45=23×54=1012=56\frac{2}{3} \div \frac{4}{5} = \frac{2}{3} \times \frac{5}{4} = \frac{10}{12} = \frac{5}{6}

Converting Fractions to Decimals

Divide the numerator by the denominator:

34=3÷4=0.75\frac{3}{4} = 3 ÷ 4 = 0.75

Common Fraction-Decimal Equivalents

FractionDecimalPercent
½0.550%
¼0.2525%
¾0.7575%
0.333...33⅓%
0.666...66⅔%
0.220%
0.12512.5%

Converting Decimals to Fractions

  1. Write the decimal as a fraction over a power of 10
  2. Simplify

Example: 0.75 = 75/100 = ¾

Classroom Application

Help students with fractions and decimals by:

  • Using fraction circles and bars for visual understanding
  • Showing equivalence with real-world examples (pizza, money)
  • Creating fraction-decimal conversion charts
  • Practicing with manipulatives before abstract problems
  • Using number lines to compare fractions
Test Your Knowledge

What is ⅔ × ¾?

A
B
C
D
Test Your Knowledge

Convert the mixed number 2¾ to an improper fraction.

A
B
C
D